unique combinations of values in selected columns in pandas data frame and count

Each Answer to this Q is separated by one/two green lines.

I have my data in pandas data frame as follows:

df1 = pd.DataFrame({'A':['yes','yes','yes','yes','no','no','yes','yes','yes','no'],
                   'B':['yes','no','no','no','yes','yes','no','yes','yes','no']})

So, my data looks like this

----------------------------
index         A        B
0           yes      yes
1           yes       no
2           yes       no
3           yes       no
4            no      yes
5            no      yes
6           yes       no
7           yes      yes
8           yes      yes
9            no       no
-----------------------------

I would like to transform it to another data frame. The expected output can be shown in the following python script:

output = pd.DataFrame({'A':['no','no','yes','yes'],'B':['no','yes','no','yes'],'count':[1,2,4,3]})

So, my expected output looks like this

--------------------------------------------
index      A       B       count
--------------------------------------------
0         no       no        1
1         no      yes        2
2        yes       no        4
3        yes      yes        3
--------------------------------------------

Actually, I can achieve to find all combinations and count them by using the following command: mytable = df1.groupby(['A','B']).size()

However, it turns out that such combinations are in a single column. I would like to separate each value in a combination into different column and also add one more column for the result of counting. Is it possible to do that? May I have your suggestions? Thank you in advance.

You can groupby on cols ‘A’ and ‘B’ and call size and then reset_index and rename the generated column:

In [26]:

df1.groupby(['A','B']).size().reset_index().rename(columns={0:'count'})
Out[26]:
     A    B  count
0   no   no      1
1   no  yes      2
2  yes   no      4
3  yes  yes      3

update

A little explanation, by grouping on the 2 columns, this groups rows where A and B values are the same, we call size which returns the number of unique groups:

In[202]:
df1.groupby(['A','B']).size()

Out[202]: 
A    B  
no   no     1
     yes    2
yes  no     4
     yes    3
dtype: int64

So now to restore the grouped columns, we call reset_index:

In[203]:
df1.groupby(['A','B']).size().reset_index()

Out[203]: 
     A    B  0
0   no   no  1
1   no  yes  2
2  yes   no  4
3  yes  yes  3

This restores the indices but the size aggregation is turned into a generated column 0, so we have to rename this:

In[204]:
df1.groupby(['A','B']).size().reset_index().rename(columns={0:'count'})

Out[204]: 
     A    B  count
0   no   no      1
1   no  yes      2
2  yes   no      4
3  yes  yes      3

groupby does accept the arg as_index which we could have set to False so it doesn’t make the grouped columns the index, but this generates a series and you’d still have to restore the indices and so on….:

In[205]:
df1.groupby(['A','B'], as_index=False).size()

Out[205]: 
A    B  
no   no     1
     yes    2
yes  no     4
     yes    3
dtype: int64

In Pandas 1.1.0 you can use the method value_counts with DataFrames:

df.value_counts() # or df[['A', 'B']].value_counts()

Result:

A    B
yes  no     4
     yes    3
no   yes    2
     no     1
dtype: int64

Convert index to columns and sort by value counts:

df.value_counts(ascending=True).reset_index(name="count")

Result:

     A    B  count
0   no   no      1
1   no  yes      2
2  yes  yes      3
3  yes   no      4

Slightly related, I was looking for the unique combinations and I came up with this method:

def unique_columns(df,columns):

    result = pd.Series(index = df.index)

    groups = meta_data_csv.groupby(by = columns)
    for name,group in groups:
       is_unique = len(group) == 1
       result.loc[group.index] = is_unique

    assert not result.isnull().any()

    return result

And if you only want to assert that all combinations are unique:

df1.set_index(['A','B']).index.is_unique

I haven’t done time test with this but it was fun to try. Basically convert two columns to one column of tuples. Now convert that to a dataframe, do ‘value_counts()’ which finds the unique elements and counts them. Fiddle with zip again and put the columns in order you want. You can probably make the steps more elegant but working with tuples seems more natural to me for this problem

b = pd.DataFrame({'A':['yes','yes','yes','yes','no','no','yes','yes','yes','no'],'B':['yes','no','no','no','yes','yes','no','yes','yes','no']})

b['count'] = pd.Series(zip(*[b.A,b.B]))
df = pd.DataFrame(b['count'].value_counts().reset_index())
df['A'], df['B'] = zip(*df['index'])
df = df.drop(columns="index")[['A','B','count']]

Based on the accepted answer and @Bryan P’s comment relating to the differences between count() and size(), I opted for count() for cleaner code as below :

df1.groupby(['A','B']).count().reset_index()

Placing @EdChum’s very nice answer into a function count_unique_index.
The unique method only works on pandas series, not on data frames.
The function below reproduces the behavior of the unique function in R:

unique returns a vector, data frame or array like x but with duplicate elements/rows removed.

And adds a count of the occurrences as requested by the OP.

def count_unique_index(df, by):                                                                                                                                                 
    return df.groupby(by).size().reset_index().rename(columns={0:'count'})                                                                                                      

df1 = pd.DataFrame({'A':['yes','yes','yes','yes','no','no','yes','yes','yes','no'],                                                                                             
                    'B':['yes','no','no','no','yes','yes','no','yes','yes','no']})   
                                                                                                                                                                                 
count_unique_index(df1, ['A','B'])                                                                                                                                              
     A    B  count                                                                                                                                                                  
0   no   no      1                                                                                                                                                                  
1   no  yes      2                                                                                                                                                                  
2  yes   no      4                                                                                                                                                                  
3  yes  yes      3


The answers/resolutions are collected from stackoverflow, are licensed under cc by-sa 2.5 , cc by-sa 3.0 and cc by-sa 4.0 .

Leave a Reply

Your email address will not be published.