[Solved] dplyr – using column names as function arguments

With a data frame, I’m using dplyr to aggregate some column like below.

> data <- data.frame(a=rep(1:2,3), b=c(6:11))
> data
  a  b
1 1  6
2 2  7
3 1  8
4 2  9
5 1 10
6 2 11
> data %>% group_by(a) %>% summarize(tot=sum(b))
# A tibble: 2 x 2
      a   tot
  <int> <int>
1     1    24
2     2    27

This is perfect. However I want to create a re-usable function for this such that a column name can be passed as argument.

Looking at answers to related questions like here, I tried the following.

sumByColumn <- function(df, colName) {
  df %>%
  group_by(a) %>%
  summarize(tot=sum(colName))
  df
}

However I’m not able to get it working.

> sumByColumn(data, "b")

 Error in summarise_impl(.data, dots) : 
  Evaluation error: invalid 'type' (character) of argument. 

> sumByColumn(data, b)

 Error in summarise_impl(.data, dots) : 
  Evaluation error: object 'b' not found. 
> 

Solution #1:

This can work using the latest dplyr syntax (as can be seen on github):

library(dplyr)
library(rlang)
sumByColumn <- function(df, colName) {
  df %>%
    group_by(a) %>%
    summarize(tot = sum(!! sym(colName)))
}

sumByColumn(data, "b")
## A tibble: 2 x 2
#      a   tot
#  <int> <int>
#1     1    24
#2     2    27

And an alternative way of specifying b as a variable:

library(dplyr)
sumByColumn <- function(df, colName) {
  myenc <- enquo(colName)
  df %>%
    group_by(a) %>%
    summarize(tot = sum(!!myenc))
}

sumByColumn(data, b)
## A tibble: 2 x 2
#      a   tot
#  <int> <int>
#1     1    24
#2     2    27
Respondent: LyzandeR

Solution #2:

dplyr now also provides helper functions (summarise_at, which accepts arguments vars, funs) for this

sumByColumn <- function(df, colName) {
  df %>%
    group_by(a) %>%
    summarize_at(vars(colName), funs(tot = sum))
}

provides the same answer

# A tibble: 2 x 2
      # a   tot
  # <int> <int>
# 1     1    24
# 2     2    27
Respondent: CPak

Solution #3:

We can use the .data pronoun.

library(dplyr)

sumByColumn <- function(df, colName) {
  df %>%
    group_by(a) %>%
    summarise(tot = sum(.data[[colName]]))
}

sumByColumn(data, "b")

#      a   tot
#* <int> <int>
#1     1    24
#2     2    27
Respondent: Ronak Shah

The answers/resolutions are collected from stackoverflow, are licensed under cc by-sa 2.5 , cc by-sa 3.0 and cc by-sa 4.0 .

Leave a Reply

Your email address will not be published.