Question

[Solved] convert HTML Character Entity Encoding in R

Is there a way in R to convert HTML Character Entity Encodings?

I would like to convert HTML character entities like
& to & or
> to >

For Perl exists the package HTML::Entities which could do that, but I couldn’t find something similar in R.

I also tried iconv() but couldn’t get satisfying results. Maybe there is also a way using the XML package but I haven’t figured it out yet.

Solution #1:

Update: this answer is outdated. Please check the answer below based on the new xml2 pkg.


Try something along the lines of:

# load XML package
library(XML)

# Convenience function to convert html codes
html2txt <- function(str) {
      xpathApply(htmlParse(str, asText=TRUE),
                 "//body//text()", 
                 xmlValue)[[1]] 
}

# html encoded string
( x <- paste("i", "s", "n", "&", "a", "p", "o", "s", ";", "t", sep = "") )
[1] "isn&apos;t"

# converted string
html2txt(x)
[1] "isn't"

UPDATE: Edited the html2txt() function so it applies to more situations

Respondent: Tony Breyal

Solution #2:

Unescape xml/html values using xml2 package:

unescape_xml <- function(str){
  xml2::xml_text(xml2::read_xml(paste0("<x>", str, "</x>")))
}

unescape_html <- function(str){
  xml2::xml_text(xml2::read_html(paste0("<x>", str, "</x>")))
}

Examples:

unescape_xml("3 &lt; x &amp; x &gt; 9")
# [1] "3 < x & x > 9"
unescape_html("&euro; 2.99")
# [1] "€ 2.99"
Respondent: Jeroen

Solution #3:

While the solution by Jeroen does the job, it has the disadvantage that it is not vectorised and therefore slow if applied to a large number of characters. In addition, it only works with a character vector of length one and one has to use sapply for a longer character vector.

To demonstrate this, I first create a large character vector:

set.seed(123)
strings <- c("abcd", "&amp; &apos; &gt;", "&amp;", "&euro; &lt;")
many_strings <- sample(strings, 10000, replace = TRUE)

And apply the function:

unescape_html <- function(str) {
  xml2::xml_text(xml2::read_html(paste0("<x>", str, "</x>")))
}

system.time(res <- sapply(many_strings, unescape_html, USE.NAMES = FALSE))
##    user  system elapsed 
##   2.327   0.000   2.326 
head(res)
## [1] "& ' >" "€ <"   "& ' >" "€ <"   "€ <"   "abcd" 

It is much faster if all the strings in the character vector are combined into a single, large string, such that read_html() and xml_text() need only be used once. The strings can then easily be separated again using strsplit():

unescape_html2 <- function(str){
  html <- paste0("<x>", paste0(str, collapse = "#_|"), "</x>")
  parsed <- xml2::xml_text(xml2::read_html(html))
  strsplit(parsed, "#_|", fixed = TRUE)[[1]]
}

system.time(res2 <- unescape_html2(many_strings))
##    user  system elapsed 
##   0.011   0.000   0.010 
identical(res, res2)
## [1] TRUE

Of course, you need to be careful that the string that you use to combine the various strings in str ("#_|" in my example) does not appear anywhere in str. Otherwise, you will introduce an error, when the large string is split again in the end.

Respondent: Stibu

Solution #4:

Based on Stibu’s answer, I went to benchmark the functions.

# first create large vector as in Stibu's answer
set.seed(123)
strings <- c("abcd", "&amp; &apos; &gt;", "&amp;", "&euro; &lt;")
many_strings <- sample(strings, 10000, replace = TRUE)

# then benchmark the functions by Stibu and Jeroen
bench::mark(
  textutils::HTMLdecode(many_strings),
  map_chr(many_strings, unescape_html),
  unescape_html2(many_strings)
)

# A tibble: 3 x 13
  expression                                min   median `itr/sec` mem_alloc `gc/sec` n_itr  n_gc total_time result memory time 
  <bch:expr>                           <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl> <int> <dbl>   <bch:tm> <list> <list> <lis>
1 textutils::HTMLdecode(many_strings)  855.02ms 855.02ms     1.17   329.18MB    10.5      1     9   855.02ms <chr … <Rpro… <bch2 map_chr(many_strings, unescape_html)    1.09s    1.09s     0.919    6.79MB     5.51     1     6      1.09s <chr … <Rpro… <bch3 unescape_html2(many_strings)           4.85ms   5.13ms   195.     581.48KB     0       98     0   503.63ms <chr … <Rpro… <bch…
# … with 1 more variable: gc <list>
Warning message:
Some expressions had a GC in every iteration; so filtering is disabled. 

Here I vectorize Jeroen’s unescape_html function by purrr::map_chr operator. So far, this just confirms Stibu’s claim that the unescape_html2 is indeed many times faster! It is even way faster than textutils::HTMLdecode function.

But I also found that the xml version could be even faster.

unescape_xml2 <- function(str){
  html <- paste0("<x>", paste0(str, collapse = "#_|"), "</x>")
  parsed <- xml2::xml_text(xml2::read_xml(html))
  strsplit(parsed, "#_|", fixed = TRUE)[[1]]
}

However, this function fails when dealing with the many_strings object (maybe because read_xml can not read Euro symbol. So I have to try a different way for benchmarking.

library(tidyverse)
library(rvest)

entity_html <- read_html("https://dev.w3.org/html5/html-author/charref")
entity_mapping <- entity_html %>% 
  html_node(css = "table") %>% 
  html_table() %>% 
  rename(text = X1,
         named = X2,
         hex = X3, 
         dec = X4,
         desc = X5) %>% 
  as_tibble
s2 <- entity_mapping %>% pull(dec) # dec can be replaced by hex or named

bench::mark(
  textutils::HTMLdecode(s2),
  map_chr(s2, unescape_xml),
  map_chr(s2, unescape_html),
  unescape_xml2(s2),
  unescape_html2(s2)
)

# A tibble: 5 x 13
  expression                      min   median `itr/sec` mem_alloc `gc/sec` n_itr  n_gc total_time result memory   time   gc    
  <bch:expr>                 <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl> <int> <dbl>   <bch:tm> <list> <list>   <list> <list>
1 textutils::HTMLdecode(s2)   191.7ms  194.9ms      5.16    64.1MB    10.3      3     6      582ms <chr … <Rprofm… <bch:… <tibb…
2 map_chr(s2, unescape_xml)    73.8ms   80.9ms     11.9   1006.9KB     5.12     7     3      586ms <chr … <Rprofm… <bch:… <tibb…
3 map_chr(s2, unescape_html)  162.4ms  163.7ms      5.83  1006.9KB     5.83     3     3      514ms <chr … <Rprofm… <bch:… <tibb…
4 unescape_xml2(s2)           459.2µs    473µs   2034.      37.9KB     2.00  1017     1      500ms <chr … <Rprofm… <bch:… <tibb…
5 unescape_html2(s2)            590µs  607.5µs   1591.      37.9KB     2.00   796     1      500ms <chr … <Rprofm… <bch:… <tibb…
Warning message:
Some expressions had a GC in every iteration; so filtering is disabled. 

We can also try on hex ones.

> bench::mark(
+   # gsubreplace_mapping(s2, entity_mapping),
+   # gsubreplace_local(s2),
+   textutils::HTMLdecode(s3),
+   map_chr(s3, unescape_xml),
+   map_chr(s3, unescape_html),
+   unescape_xml2(s3),
+   unescape_html2(s3)
+ )

# A tibble: 5 x 13
  expression                      min   median `itr/sec` mem_alloc `gc/sec` n_itr  n_gc total_time result memory   time   gc    
  <bch:expr>                 <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl> <int> <dbl>   <bch:tm> <list> <list>   <list> <list>
1 textutils::HTMLdecode(s3)   204.2ms  212.3ms      4.72    64.1MB     7.87     3     5      636ms <chr … <Rprofm… <bch:… <tibb…
2 map_chr(s3, unescape_xml)    76.4ms   80.2ms     11.8   1006.9KB     5.04     7     3      595ms <chr … <Rprofm… <bch:… <tibb…
3 map_chr(s3, unescape_html)  164.6ms  165.3ms      5.80  1006.9KB     5.80     3     3      518ms <chr … <Rprofm… <bch:… <tibb…
4 unescape_xml2(s3)           487.4µs  500.5µs   1929.      74.5KB     2.00   965     1      500ms <chr … <Rprofm… <bch:… <tibb…
5 unescape_html2(s3)          611.1µs  627.7µs   1574.      40.4KB     0      788     0      501ms <chr … <Rprofm… <bch:… <tibb…
Warning message:
Some expressions had a GC in every iteration; so filtering is disabled. 

Here the xml version is even more faster than the html version.

Respondent: F.X.

The answers/resolutions are collected from stackoverflow, are licensed under cc by-sa 2.5 , cc by-sa 3.0 and cc by-sa 4.0 .

Most Popular

To Top
India and Pakistan’s steroid-soaked rhetoric over Kashmir will come back to haunt them both clenbuterol australia bossier man pleads guilty for leadership role in anabolic steriod distribution conspiracy