How to load a model from an HDF5 file in Keras?

Each Answer to this Q is separated by one/two green lines.

How to load a model from an HDF5 file in Keras?

What I tried:

model = Sequential()

model.add(Dense(64, input_dim=14, init="uniform"))
model.add(LeakyReLU(alpha=0.3))
model.add(BatchNormalization(epsilon=1e-06, mode=0, momentum=0.9, weights=None))
model.add(Dropout(0.5))

model.add(Dense(64, init="uniform"))
model.add(LeakyReLU(alpha=0.3))
model.add(BatchNormalization(epsilon=1e-06, mode=0, momentum=0.9, weights=None))
model.add(Dropout(0.5))

model.add(Dense(2, init="uniform"))
model.add(Activation('softmax'))


sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss="binary_crossentropy", optimizer=sgd)

checkpointer = ModelCheckpoint(filepath="/weights.hdf5", verbose=1, save_best_only=True)
model.fit(X_train, y_train, nb_epoch=20, batch_size=16, show_accuracy=True, validation_split=0.2, verbose = 2, callbacks=[checkpointer])

The above code successfully saves the best model to a file named weights.hdf5. What I want to do is then load that model. The below code shows how I tried to do so:

model2 = Sequential()
model2.load_weights("/Users/Desktop/SquareSpace/weights.hdf5")

This is the error I get:

IndexError                                Traceback (most recent call last)
<ipython-input-101-ec968f9e95c5> in <module>()
      1 model2 = Sequential()
----> 2 model2.load_weights("/Users/Desktop/SquareSpace/weights.hdf5")

/Applications/anaconda/lib/python2.7/site-packages/keras/models.pyc in load_weights(self, filepath)
    582             g = f['layer_{}'.format(k)]
    583             weights = [g['param_{}'.format(p)] for p in range(g.attrs['nb_params'])]
--> 584             self.layers[k].set_weights(weights)
    585         f.close()
    586 

IndexError: list index out of range

If you stored the complete model, not only the weights, in the HDF5 file, then it is as simple as

from keras.models import load_model
model = load_model('model.h5')

load_weights only sets the weights of your network. You still need to define its architecture before calling load_weights:

def create_model():
   model = Sequential()
   model.add(Dense(64, input_dim=14, init="uniform"))
   model.add(LeakyReLU(alpha=0.3))
   model.add(BatchNormalization(epsilon=1e-06, mode=0, momentum=0.9, weights=None))
   model.add(Dropout(0.5)) 
   model.add(Dense(64, init="uniform"))
   model.add(LeakyReLU(alpha=0.3))
   model.add(BatchNormalization(epsilon=1e-06, mode=0, momentum=0.9, weights=None))
   model.add(Dropout(0.5))
   model.add(Dense(2, init="uniform"))
   model.add(Activation('softmax'))
   return model

def train():
   model = create_model()
   sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
   model.compile(loss="binary_crossentropy", optimizer=sgd)

   checkpointer = ModelCheckpoint(filepath="/tmp/weights.hdf5", verbose=1, save_best_only=True)
   model.fit(X_train, y_train, nb_epoch=20, batch_size=16, show_accuracy=True, validation_split=0.2, verbose=2, callbacks=[checkpointer])

def load_trained_model(weights_path):
   model = create_model()
   model.load_weights(weights_path)

See the following sample code on how to Build a basic Keras Neural Net Model, save Model (JSON) & Weights (HDF5) and load them:

# create model
model = Sequential()
model.add(Dense(X.shape[1], input_dim=X.shape[1], activation='relu')) #Input Layer
model.add(Dense(X.shape[1], activation='relu')) #Hidden Layer
model.add(Dense(output_dim, activation='softmax')) #Output Layer

# Compile & Fit model
model.compile(loss="binary_crossentropy", optimizer="adam", metrics=['accuracy'])
model.fit(X,Y,nb_epoch=5,batch_size=100,verbose=1)    

# serialize model to JSON
model_json = model.to_json()
with open("Data/model.json", "w") as json_file:
    json_file.write(simplejson.dumps(simplejson.loads(model_json), indent=4))

# serialize weights to HDF5
model.save_weights("Data/model.h5")
print("Saved model to disk")

# load json and create model
json_file = open('Data/model.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)

# load weights into new model
loaded_model.load_weights("Data/model.h5")
print("Loaded model from disk")

# evaluate loaded model on test data 
# Define X_test & Y_test data first
loaded_model.compile(loss="binary_crossentropy", optimizer="adam", metrics=['accuracy'])
score = loaded_model.evaluate(X_test, Y_test, verbose=0)
print ("%s: %.2f%%" % (loaded_model.metrics_names[1], score[1]*100))

According to official documentation
https://keras.io/getting-started/faq/#how-can-i-install-hdf5-or-h5py-to-save-my-models-in-keras

you can do :

first test if you have h5py installed by running the

import h5py

if you dont have errors while importing h5py you are good to save:

from keras.models import load_model

model.save('my_model.h5')  # creates a HDF5 file 'my_model.h5'
del model  # deletes the existing model

# returns a compiled model
# identical to the previous one
model = load_model('my_model.h5')

If you need to install h5py http://docs.h5py.org/en/latest/build.html

I was struggling with this error for a bit, and then realized I was accidently using

with open(f'path_to_filename/{filename.h5}', "rb") as file:
    loaded_model = tf.keras.models.load_model(file)

Whereas this syntax isnt intended to be used with this load model function,

The normal way of just writing this, worked for me

loaded_model = tf.keras.models.load_model('path_to_filename/filename.h5')

I done in this way

from keras.models import Sequential
from keras_contrib.losses import import crf_loss
from keras_contrib.metrics import crf_viterbi_accuracy

# To save model
model.save('my_model_01.hdf5')

# To load the model
custom_objects={'CRF': CRF,'crf_loss': crf_loss,'crf_viterbi_accuracy':crf_viterbi_accuracy}

# To load a persisted model that uses the CRF layer 
model1 = load_model("/home/abc/my_model_01.hdf5", custom_objects = custom_objects)


The answers/resolutions are collected from stackoverflow, are licensed under cc by-sa 2.5 , cc by-sa 3.0 and cc by-sa 4.0 .

Leave a Reply

Your email address will not be published.