How to implement a Boolean search with multiple columns in pandas

Each Answer to this Q is separated by one/two green lines.

I have a pandas df and would like to accomplish something along these lines (in SQL terms):

SELECT * FROM df WHERE column1 = 'a' OR column2 = 'b' OR column3 = 'c' etc.

Now this works, for one column/value pair:

foo = df.loc[df['column']==value]

However, I’m not sure how to expand that to multiple column/value pairs.

  • To be clear, each column matches a different value.

You need to enclose multiple conditions in braces due to operator precedence and use the bitwise and (&) and or (|) operators:

foo = df[(df['column1']==value) | (df['columns2'] == 'b') | (df['column3'] == 'c')]

If you use and or or, then pandas is likely to moan that the comparison is ambiguous. In that case, it is unclear whether we are comparing every value in a series in the condition, and what does it mean if only 1 or all but 1 match the condition. That is why you should use the bitwise operators or the numpy np.all or np.any to specify the matching criteria.

There is also the query method: http://pandas.pydata.org/pandas-docs/dev/generated/pandas.DataFrame.query.html

but there are some limitations mainly to do with issues where there could be ambiguity between column names and index values.

A more concise–but not necessarily faster–method is to use DataFrame.isin() and DataFrame.any()

In [27]: n = 10

In [28]: df = DataFrame(randint(4, size=(n, 2)), columns=list('ab'))

In [29]: df
Out[29]:
   a  b
0  0  0
1  1  1
2  1  1
3  2  3
4  2  3
5  0  2
6  1  2
7  3  0
8  1  1
9  2  2

[10 rows x 2 columns]

In [30]: df.isin([1, 2])
Out[30]:
       a      b
0  False  False
1   True   True
2   True   True
3   True  False
4   True  False
5  False   True
6   True   True
7  False  False
8   True   True
9   True   True

[10 rows x 2 columns]

In [31]: df.isin([1, 2]).any(1)
Out[31]:
0    False
1     True
2     True
3     True
4     True
5     True
6     True
7    False
8     True
9     True
dtype: bool

In [32]: df.loc[df.isin([1, 2]).any(1)]
Out[32]:
   a  b
1  1  1
2  1  1
3  2  3
4  2  3
5  0  2
6  1  2
8  1  1
9  2  2

[8 rows x 2 columns]

All the considerations made by @EdChum in 2014 are still valid, but the pandas.Dataframe.ix method is deprecated from the version 0.0.20 of pandas. Directly from the docs:

Warning: Starting in 0.20.0, the .ix indexer is deprecated, in favor
of the more strict .iloc and .loc indexers.

In subsequent versions of pandas, this method has been replaced by new indexing methods pandas.Dataframe.loc and pandas.Dataframe.iloc.

If you want to learn more, in this post you can find comparisons between the methods mentioned above.

Ultimately, to date (and there does not seem to be any change in the upcoming versions of pandas from this point of view), the answer to this question is as follows:

foo = df.loc[(df['column1']==value) | (df['columns2'] == 'b') | (df['column3'] == 'c')]

the query() method can do that very intuitively. Express your condition in a string to be evaluated like the following example :

df = df.query("columnNameA <= @x or columnNameB == @y")

with x and y are declared variables which you can refer to with @

Easiest way to do this

if this helpful hit up arrow! Tahnks!!

students = [ ('jack1', 'Apples1' , 341) ,
             ('Riti1', 'Mangos1'  , 311) ,
             ('Aadi1', 'Grapes1' , 301) ,
             ('Sonia1', 'Apples1', 321) ,
             ('Lucy1', 'Mangos1'  , 331) ,
             ('Mike1', 'Apples1' , 351),
              ('Mik', 'Apples1' , np.nan)
              ]
#Create a DataFrame object
df = pd.DataFrame(students, columns = ['Name1' , 'Product1', 'Sale1']) 
print(df)


    Name1 Product1  Sale1
0   jack1  Apples1    341
1   Riti1  Mangos1    311
2   Aadi1  Grapes1    301
3  Sonia1  Apples1    321
4   Lucy1  Mangos1    331
5   Mike1  Apples1    351
6     Mik  Apples1    NaN

# Select rows in above DataFrame for which ‘Product’ column contains the value ‘Apples’,
subset = df[df['Product1'] == 'Apples1']
print(subset)

 Name1 Product1  Sale1
0   jack1  Apples1    341
3  Sonia1  Apples1    321
5   Mike1  Apples1    351
6     Mik  Apples1    NA

# Select rows in above DataFrame for which ‘Product’ column contains the value ‘Apples’, AND notnull value in Sale

subsetx= df[(df['Product1'] == "Apples1")  & (df['Sale1'].notnull())]
print(subsetx)
    Name1   Product1    Sale1
0   jack1   Apples1      341
3   Sonia1  Apples1      321
5   Mike1   Apples1      351

# Select rows in above DataFrame for which ‘Product’ column contains the value ‘Apples’, AND Sale = 351

subsetx= df[(df['Product1'] == "Apples1")  & (df['Sale1'] == 351)]
print(subsetx)

   Name1 Product1  Sale1
5  Mike1  Apples1    351

# Another example
subsetData = df[df['Product1'].isin(['Mangos1', 'Grapes1']) ]
print(subsetData)

Name1 Product1  Sale1
1  Riti1  Mangos1    311
2  Aadi1  Grapes1    301
4  Lucy1  Mangos1    331

Here is the Original link I found this. I edit it a little bit — https://thispointer.com/python-pandas-select-rows-in-dataframe-by-conditions-on-multiple-columns/


The answers/resolutions are collected from stackoverflow, are licensed under cc by-sa 2.5 , cc by-sa 3.0 and cc by-sa 4.0 .