When I attempt to use a static method from within the body of the class, and define the static method using the built-in staticmethod function as a decorator, like this:

class Klass(object):

    @staticmethod  # use as decorator
    def _stat_func():
        return 42

    _ANS = _stat_func()  # call the staticmethod

    def method(self):
        ret = Klass._stat_func() + Klass._ANS
        return ret

I get the following error:

Traceback (most recent call last):
  File "call_staticmethod.py", line 1, in <module>
    class Klass(object): 
  File "call_staticmethod.py", line 7, in Klass
    _ANS = _stat_func() 
  TypeError: 'staticmethod' object is not callable

I understand why this is happening (descriptor binding), and can work around it by manually converting _stat_func() into a staticmethod after its last use, like so:

class Klass(object):

    def _stat_func():
        return 42

    _ANS = _stat_func()  # use the non-staticmethod version

    _stat_func = staticmethod(_stat_func)  # convert function to a static method

    def method(self):
        ret = Klass._stat_func() + Klass._ANS
        return ret

So my question is:

    Are there cleaner or more “Pythonic” ways to accomplish this?

staticmethod objects apparently have a __func__ attribute storing the original raw function (makes sense that they had to). So this will work:

class Klass(object):

    @staticmethod  # use as decorator
    def stat_func():
        return 42

    _ANS = stat_func.__func__()  # call the staticmethod

    def method(self):
        ret = Klass.stat_func()
        return ret

As an aside, though I suspected that a staticmethod object had some sort of attribute storing the original function, I had no idea of the specifics. In the spirit of teaching someone to fish rather than giving them a fish, this is what I did to investigate and find that out (a C&P from my Python session):

>>> class Foo(object):
...     @staticmethod
...     def foo():
...         return 3
...     global z
...     z = foo

>>> z
<staticmethod object at 0x0000000002E40558>
>>> Foo.foo
<function foo at 0x0000000002E3CBA8>
>>> dir(z)
['__class__', '__delattr__', '__doc__', '__format__', '__func__', '__get__', '__getattribute__', '__hash__', '__init__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__']
>>> z.__func__
<function foo at 0x0000000002E3CBA8>

Similar sorts of digging in an interactive session (dir is very helpful) can often solve these sorts of question very quickly.

This is the way I prefer:

class Klass(object):

    @staticmethod
    def stat_func():
        return 42

    _ANS = stat_func.__func__()

    def method(self):
        return self.__class__.stat_func() + self.__class__._ANS

I prefer this solution to Klass.stat_func, because of the DRY principle.
Reminds me of the reason why there is a new super() in Python 3 🙂

But I agree with the others, usually the best choice is to define a module level function.

For instance with @staticmethod function, the recursion might not look very good (You would need to break DRY principle by calling Klass.stat_func inside Klass.stat_func). That’s because you don’t have reference to self inside static method.
With module level function, everything will look OK.

What about injecting the class attribute after the class definition?

class Klass(object):

    @staticmethod  # use as decorator
    def stat_func():
        return 42

    def method(self):
        ret = Klass.stat_func()
        return ret

Klass._ANS = Klass.stat_func()  # inject the class attribute with static method value

This is due to staticmethod being a descriptor and requires a class-level attribute fetch to exercise the descriptor protocol and get the true callable.

From the source code:

It can be called either on the class (e.g. C.f()) or on an instance
(e.g. C().f()); the instance is ignored except for its class.

But not directly from inside the class while it is being defined.

But as one commenter mentioned, this is not really a “Pythonic” design at all. Just use a module level function instead.

What about this solution? It does not rely on knowledge of @staticmethod decorator implementation. Inner class StaticMethod plays as a container of static initialization functions.

class Klass(object):

    class StaticMethod:
        @staticmethod  # use as decorator
        def _stat_func():
            return 42

    _ANS = StaticMethod._stat_func()  # call the staticmethod

    def method(self):
        ret = self.StaticMethod._stat_func() + Klass._ANS
        return ret

If the “core problem” is assigning class variables using functions, an alternative is to use a metaclass (it’s kind of “annoying” and “magical” and I agree that the static method should be callable inside the class, but unfortunately it isn’t). This way, we can refactor the behavior into a standalone function and don’t clutter the class.

class KlassMetaClass(type(object)):
    @staticmethod
    def _stat_func():
        return 42

    def __new__(cls, clsname, bases, attrs):
        # Call the __new__ method from the Object metaclass
        super_new = super().__new__(cls, clsname, bases, attrs)
        # Modify class variable "_ANS"
        super_new._ANS = cls._stat_func()
        return super_new

class Klass(object, metaclass=KlassMetaClass):
    """
    Class that will have class variables set pseudo-dynamically by the metaclass
    """
    pass

print(Klass._ANS) # prints 42

Using this alternative “in the real world” may be problematic. I had to use it to override class variables in Django classes, but in other circumstances maybe it’s better to go with one of the alternatives from the other answers.